Loading...

The History of Mathematics: A Brief Course, 3rd Edition

ISBN: 978-1-118-21756-6

November 2012

648 pages

Description

Praise for the Second Edition

"An amazing assemblage of worldwide contributions in mathematics and, in addition to use as a course book, a valuable resource . . . essential."
—CHOICE

This Third Edition of The History of Mathematics examines the elementary arithmetic, geometry, and algebra of numerous cultures, tracing their usage from Mesopotamia, Egypt, Greece, India, China, and Japan all the way to Europe during the Medieval and Renaissance periods where calculus was developed.

Aimed primarily at undergraduate students studying the history of mathematics for science, engineering, and secondary education, the book focuses on three main ideas: the facts of who, what, when, and where major advances in mathematics took place; the type of mathematics involved at the time; and the integration of this information into a coherent picture of the development of mathematics. In addition, the book features carefully designed problems that guide readers to a fuller understanding of the relevant mathematics and its social and historical context. Chapter-end exercises, numerous photographs, and a listing of related websites are also included for readers who wish to pursue a specialized topic in more depth. Additional features of The History of Mathematics, Third Edition include:

  • Material arranged in a chronological and cultural context
  • Specific parts of the history of mathematics presented as individual lessons
  • New and revised exercises ranging between technical, factual, and integrative
  • Individual PowerPoint presentations for each chapter and a bank of homework and test questions (in addition to the exercises in the book)
  • An emphasis on geography, culture, and mathematics

In addition to being an ideal coursebook for undergraduate students, the book also serves as a fascinating reference for mathematically inclined individuals who are interested in learning about the history of mathematics.

About the Author

ROGER L. COOKE, PhD, is Williams Professor of Mathematics at the University of Vermont. His research interests include the history of mathematics and Fourier analysis, and he has taught a general introduction to the history and development of mathematics for many years.