Loading...

Laser-based Mid-infrared Sources and Applications

ISBN: 978-1-119-07455-7

July 2020

550 pages

Description

An important guide to the major techniques for generating coherent light in the mid-infrared region of the spectrum

Laser-based Mid-infrared Sources and Applications gives a comprehensive overview of the existing methods for generating coherent light in the important yet difficult-to-reach mid-infrared region of the spectrum (2–20 μm) and their applications.

The book describes major approaches for mid-infrared light generation including ion-doped solid-state lasers, fiber lasers, semiconductor lasers, and laser sources based on nonlinear optical frequency conversion, and reviews a range of applications: spectral recognition of molecules and trace gas sensing, biomedical and military applications, high-field physics and attoscience, and others. Every chapter starts with the fundamentals for a given technique that enables self-directed study, while extensive references help conduct deeper research.

Laser-based Mid-infrared Sources and Applications provides up-to-date information on the state-of the art mid-infrared sources, discusses in detail the advancements made over the last two decades such as microresonators and interband cascade lasers, and explores novel approaches that are currently subjects of intense research such as supercontinuum and frequency combs generation. This important book:

• Explains the fundamental principles and major techniques for coherent mid-infrared light generation

• Discusses recent advancements and current cutting-edge research in the field

• Highlights important biomedical, environmental, and military applications

Written for researchers, academics, students, and engineers from different disciplines, the book helps navigate the rapidly expanding field of mid-infrared laser-based technologies.

About the Author

Konstantin L. Vodopyanov, is the 21st Century Scholar Endowed Chair and Professor of Optics and Physics at CREOL, the College of Optics and Photonics at the University of Central Florida. He is a world expert in mid-IR lasers, laser-matter interactions, nonlinear optics, and laser spectroscopy.