Loading...

Biopolymers for Biomedical and Biotechnological Applications

ISBN: 978-3-527-34530-4

January 2021

400 pages

Description
Provides insight into biopolymers, their physicochemical properties, and their biomedical and biotechnological applications

This comprehensive book is a one-stop reference for the production, modifications, and assessment of biopolymers. It highlights the technical and methodological advancements in introducing biopolymers, their study, and promoted applications.

"Biopolymers for Biomedical and Biotechnological Applications" begins with a general overview of biopolymers, properties, and biocompatibility. It then provides in-depth information in three dedicated sections: Biopolymers through Bioengineering and Biotechnology Venues; Polymeric Biomaterials with Wide Applications; and Biopolymers for Specific Applications. Chapters cover: advances in biocompatibility; advanced microbial polysaccharides; microbial cell factories for biomanufacturing of polysaccharides; exploitation of exopolysaccharides from lactic acid bacteria; and the new biopolymer for biomedical application called nanocellulose. Advances in mucin biopolymer research are presented, along with those in the synthesis of fibrous proteins and their applications. The book looks at microbial polyhydroxyalkanoates (PHAs), as well as natural and synthetic biopolymers in drug delivery and tissue engineering. It finishes with a chapter on the current state and applications of, and future trends in, biopolymers in regenerative medicine.

* Offers a complete and thorough treatment of biopolymers from synthesis strategies and physiochemical properties to applications in industrial and medical biotechnology
* Discusses the most attracted biopolymers with wide and specific applications
* Takes a systematic approach to the field which allows readers to grasp and implement strategies for biomedical and biotechnological applications

"Biopolymers for Biomedical and Biotechnological Applications" appeals to biotechnologists, bioengineers, and polymer chemists, as well as to those working in the biotechnological industry and institutes.
About the Author
Bernd Rehm received his MSc and PhD degrees (microbiology) from the Ruhr University Bochum, Germany, in 1991 and 1993, respectively. He continued as a postdoc at the Department of Microbiology and Immunology at the University of British Columbia, Canada. From 1996 to 2003, he was a research group leader at the Institute of Molecular Microbiology and Biotechnology at the University of Münster, Germany, where he also completed his habilitation. In 2003 he was appointed as Associate Professor and in 2005 promoted to Full Professor/Chair of Microbiology at Massey University in New Zealand. From 2013 to 2016 he was principal investigator of the Centre of Research Excellence (New Zealand) at the MacDiarmid Institute of Advanced Materials and Nanotechnology. He was recently appointed as Director of the Centre for Cell Factories and Biopolymer at Griffith University (Griffith Institute for Drug Discovery, Australia), and is the founder and chief technology officer of the biotechnology start-up company PolyBatics Ltd.
He is editor-in-chief and editor of 5 scientific journals as well as an editorial board member of 10 scientific journals and the sole editor of 5 books. He has authored over 200 scientific publications, and holds more than 30 patents. His R&D interests are in the microbial production of polymers and their applications. His recent studies focused on the use of engineered microorganisms to produce functionalized nano-/micro-structures for applications in diagnostics, enzyme immobilization, and antigen delivery.

Dr. Fata Moradali received his MSc degree from Tehran University and his PhD degree in molecular microbiology and genetics from Massey University, New Zealand. Early years of his career were spend for investigating bioactive components from natural resources particularly fungi. Then, it was followed by spending several years in Prof. Bernd Rehm`s laboratory investigating molecular mechanism of alginate biosynthesis and signaling pathways in the model organism Pseudomonas aeruginosa. He then moved to the Department of Oral Biology, Florida University, USA, to join Dr. Mary Ellen Davey`s laboratory to continue cutting-edge research in the field of human oral biology and microbiota. Dr. Moradali has contributed to our understanding of bacterial physiology and pathogenesis and the molecular mechanism of alginate biosynthesis in P. aeruginosa as a model organism. His research has provided new insights into the molecular mechanism of alginate polymerization/modification and its activation by bacterial second messenger cyclic di-GMP. By employing genetic engineering in his research, he demonstrated the production of various alginates from P. aeruginosa for the production of tailor- made alginate. He has extensive expertise in microbial genetics and physiology with respect to pathogenesis as well as production of microbial compounds.