Loading...

Anomalous Effects in Simple Metals

ISBN: 978-3-527-63146-9

December 2010

706 pages

Description

Using potassium as an example, this work presents a unique approach to the anomalous effects in metals, resulting in knowledge that can be applied to similar materials.

Most theoretical predictions on the electric, magnetic, optical, and thermal properties of a simple metal do - surprisingly - not agree with experimental behavior found in alkali metals. The purpose of this volume is to document the many phenomena that have violated expectations. It collects in one place the research by Albert Overhauser, one of the pioneers of the field. His and his collaborators work has led to a unified synthesis of alkali metal peculiarities. The unique collection of 65 reprint papers, commented where necessary to explain the context and perspective, is preceded by a thorough and well paced introduction.

The book is meant to advanced solid state physics and science historians.

It might also serve as additional reading in advanced solid state physics courses.
With a foreword by Mildred and Gene Dresselhaus

About the Author
Albert Overhauser graduated in Physics and Mathematics at the University of California, Berkeley. In 1951 he was awarded the Ph.D. in Physics for research carried out under the supervision of Charles Kittel. He began his professional career at the University of Illinois where he developed his famous theory of dynamic nuclear polarization which shortly after its experimental confirmation became known by its current name, the Overhauser effect. In 1953 he went to Cornell, which he left in 1958 to accept a position at Ford. In 1973 he became Professor of Physics at Purdue University.
Albert Overhauser has received numerous distiguished honors, and in 1994 was being awarded the National Medal of Science; the highest honor the United States bestows on its citizens for scientific achievement, "For his fundamental contributions to understanding the physics of solids, to theoretical physics and for the impact of his technological advances..."