Loading...

Reliability Wearout Mechanisms in Advanced CMOS Technologies

Description
This invaluable resource tells the complete story of failure mechanisms—from basic concepts to the tools necessary to conduct reliability tests and analyze the results. Both a text and a reference work for this important area of semiconductor technology, it assumes no reliability education or experience. It also offers the first reference book with all relevant physics, equations, and step-by-step procedures for CMOS technology reliability in one place. Practical appendices provide basic experimental procedures that include experiment design, performing stressing in the laboratory, data analysis, reliability projections, and interpreting projections.
About the Author
ALVIN W. STRONG, PhD, is retired from IBM in Essex Junction, Vermont. He holds nineteen patents, has authored or coauthored a number of papers, and is a member of the IEEE and chair of the JEDEC 14.2 standards subcommittee.

ERNEST Y. WU, PhD, is a Senior Technical Staff Member at Semiconductor Research and Development Center (SRDC) in the IBM System and Technology Group. He has authored or coauthored more than 100 technical or conference papers. His research interests include dielectric/device reliability and electronic physics.

ROLF-PETER VOLLERTSEN, PhD, is a Principal for Reliability Methodology at Infineon Technologies AG in Munich, Germany, where he is responsible for methods and test structures for fast Wafer Level Reliability monitoring and the implementation of fast WLR methods.

JORDI SUNE, PhD, is Professor of Electronics Engineering at the Universitat Aut¿noma de Barcelona, Spain. He is Senior Member of the IEEE and has coauthored over 150 publications on oxide reliability and electron devices. His research interests are in gate oxide physics, reliability statistics, and modeling of nanometer-scale electron devices.

GIUSEPPE LaROSA, PhD, is Project Leader of the FEOL technology reliability qualification activities for the development of advanced SOI Logic and eDRAM technologies at IBM, where he is responsible for the implementation and development of state-of-the-art NBTI stress and test methodologies.

TIMOTHY D. SULLIVAN, PhD, is Team Leader for metallization reliability at IBM's Essex Junction facility. The author of numerous technical papers and tutorials, he holds thirteen patents with several more pending.

STEWART E. RAUCH, III, PhD, is currently a Senior Technical Staff Member at the IBM SRDC in New York, where he specializes in hot carrier and NBTI reliability of state-of-the-art CMOS devices. He is the author of numerous technical papers and tutorials and holds five patents.

Features
  • It is the only comprehensive and current book that addresses all of the significant technology of reliability wearout mechanisms.
  • It is unique in providing the fundamental reliability physics and step-by-step procedures to move readers from a theoretical understanding to practical applications.
  • Practical appendices at the end of each part provide very basic experimental procedures for engineers who are conducting reliability experiments for the first time.  This "cookbook" approach includes experiment design, performing the stressing in the laboratory, data analysis, reliability projections, and interpreting the meaning of the projections.
  • A separate question and answer manual accompanies the book.