Loading...

Reliability Engineering and Services

Share Icon

ISBN: 978-1-119-16704-4

December 2018

568 pages

Description

Offers a holistic approach to guiding product design, manufacturing, and after-sales support as the manufacturing industry transitions from a product-oriented model to service-oriented paradigm 

This book provides fundamental knowledge and best industry practices in reliability modelling, maintenance optimization, and service parts logistics planning. It aims to develop an integrated product-service system (IPSS) synthesizing design for reliability, performance-based maintenance, and spare parts inventory. It also presents a lifecycle reliability-inventory optimization framework where reliability, redundancy, maintenance, and service parts are jointly coordinated. Additionally, the book aims to report the latest advances in reliability growth planning, maintenance contracting and spares inventory logistics under non-stationary demand condition.

Reliability Engineering and Service provides in-depth chapter coverage of topics such as: Reliability Concepts and Models; Mean and Variance of Reliability Estimates; Design for Reliability; Reliability Growth Planning; Accelerated Life Testing and Its Economics; Renewal Theory and Superimposed Renewals; Maintenance and Performance-Based Logistics; Warranty Service Models; Basic Spare Parts Inventory Models; Repairable Inventory Systems; Integrated Product-Service Systems (IPPS), and Resilience Modeling and Planning

  • Guides engineers to design reliable products at a low cost
  • Assists service engineers in providing superior after-sales support
  • Enables managers to respond to the changing market and customer needs
  • Uses end-of-chapter case studies to illustrate industry best practice
  • Lifecycle approach to reliability, maintenance and spares provisioning

Reliability Engineering and Service is an important book for graduate engineering students, researchers, and industry-based reliability practitioners and consultants.

About the Author

Tongdan Jin, PhD, is an Associate Professor in the Ingram School of Engineering at Texas State University. He obtained his Ph.D. in Industrial and Systems Engineering, and MS in Electrical and Computer Engineering, both from Rutgers University. His BS in Electrical and Automation Engineering is from Shaanxi University of Science and Technology, Xian, China. Prior to his academic appointment, he has five-year reliability design and management experience in Teradyne Inc., Boston. He is a recipient of best papers in several international conferences, including Evans-McElroy best paper in 2014 Reliability and Maintainability Conference. He has authored and co-authored over 140 journal and conference papers in reliability modeling and optimization with applications in manufacturing and energy systems. His research has been sponsored by NSF, the US Department of Agriculture, and the US Department of Education. He is the member of IEEE, INFORMS and IISE.