Loading...
Nanocarbon Electrochemistry
ISBN: 978-1-119-46823-3
December 2019
384 pages
Nanocarbon Electrochemistry
Provides a comprehensive introduction to the field of nanocarbon electrochemistry
The discoveries of new carbon materials such as fullerene, graphene, carbon nanotubes, graphene nanoribbon, carbon dots, and graphdiyne have triggered numerous research advances in the field of electrochemistry. This book brings together up-to-date accounts of the recent progress, developments, and achievements in the electrochemistry of different carbon materials, focusing on their unique properties and various applications.
Nanocarbon Electrochemistry begins by looking at the studies of heterogeneous electron transfer at various carbon electrodes when redox-active molecules are reversibly and specifically adsorbed on the carbon electrode surface. It then covers electrochemical energy storage applications of various carbon materials, particularly the construction and performance of supercapacitors and batteries by use of graphene and related materials. Next, it concentrates on electrochemical energy conversion applications where electrocatalysis at 0D, 1D, 2D, and 3D carbon materials is highlighted. The book finishes with an examination of the contents of electrogenerated chemiluminescence and photoelectrochemical pollutant degradation by use of diamond and related carbon materials.
Nanocarbon Electrochemistry is an ideal book for students, researchers, and industrial partners working on many diverse fields of electrochemistry, whether they already make frequent use of carbon electrodes in one form of another or are looking at electrodes for new applications.
NANOCARBON CHEMISTRY AND INTERFACES
SERIES EDITOR Nianjun Yang Institute of Materials Engineering, University of Siegen, Germany
This series reflects recent developments and findings in the field of nanocarbon chemistry and interfaces; one of the most important aspects of nanocarbon research. Topics covered include the formation, structure and properties of diamond, diamond nanoparticles, graphene, graphene-oxide, graphene (quantum) dots, carbon nanotubes, carbon fibers, fullerenes, carbon dots, carbon composites, and their hybrids. Key applications in electroanalysis, biosensing, catalysis, electrosynthesis, energy storage and conversion, environment sensing and protection, biology, and medicine are highlighted.