Loading...
Laser-Enhanced Ionization Spectroscopy
ISBN: 978-0-471-57684-6
April 1996
334 pages
Laser-Enhanced Ionization Spectrometry fills this gap in the literature. It synthesizes vast amounts of information previously available only through scattered research papers and covers every aspect of the technology, from underlying principles and theory to methodology and applications. This book examines the state of the art of LEI, compares it with other methods, and demonstrates how laser-enhanced collisional ionization is especially well suited to analytical atomic spectrometry.
The contributors to this collaborative effort—from Russia, Australia, Europe, and the United States—clarify terminology, explain the inner workings of LEI, and offer derivations for both idealized forms and realistic approximations. They also analyze the capabilities and limitations of this technique as an analytical method, including instrumentation, sources of noise, limits of detection, interferences, and applications.
After concentrating largely on flame LEI as the most commonly used method to derive LEI measurements, the discussion moves to the development of nonflame technologies for LEI. There is also extended coverage of the relationship between LEI and laser-induced fluorescence, including an examination of the interplay of laser-induced ionization and fluorescence techniques in different atomic and molecular reservoirs.
Laser-Enhanced Ionization Spectrometry places understanding, usefulness, and practical applications ahead of detailed derivations. For practicing analytical chemists and spectroscopists, it offers a clear and uncluttered approach to a complex subject, as well as a fresh perspective on a still-emerging technology.
This book sums up the present understanding and state of the art of laser-enhanced ionization (LEI)-a unique but underutilized tool for analytical atomic spectrometry. LEI possesses the special ability to ionize atoms selectively. The text focuses on the role of this technology in analytical chemistry, and covers both theory and applications in one complete, self-contained volume.
Carefully crafted by leading experts from around the globe, with contributions under six key headings, Laser-Enhanced Ionization Spectrometry