Loading...

Fundamental Principles of Optical Lithography: The Science of Microfabrication

ISBN: 978-0-470-72730-0

December 2007

544 pages

Description
Microlithography is the main technical driving force behind one of the most important phenomenon in the history of technology - microelectronics and the incredible shrinking transistor. These dramatic increases in electronic functionality per unit cost each year for early five decades, have transformed society. The gating piece of technology in this marvel of manufacturing progress has always been the process of lithography - the photochemical printing of circuit patterns onto semiconductor wafers.

This text attempts a difficult task - to capture the fundamental principles of the incredibly fast-changing field of semiconductor microlithography in such a sway that these principles may be effectively applied to past, present and future microfabrication technology generations. Its focus is on the underlying scientific principles of optical lithography, rather than its practice. It will serve equally well as a university textbook (each chapter has an extensive set of problems) and as an industry resource.

Much of the material contained in this book is, of course, a tutorial review of the published literature on lithography and related sciences, but a significant portion is new work, never before having been published. there is no other single book that covers the wide breadth of scientific disciplines needed in the practice of optical microlithography. The major topics covered within this text are optics (imaging and thin film interference effects), photoresist chemistry (chemical reactions, diffusion, and development phenomenon), lithography as a manufacturing process (process control, critical dimension control, and overlay), and resolution enhancement technologies.

About the Author
Dr. Chris A. Mack developed the lithography simulation software PROLITH, and founded and ran the company FINLE Technologies fro ten years. He then served as Vice President of Lithography Technology for KLA-Tencor for five years, until 2005. In 2003 he received the SEMI Award for North America for his efforts in lithography simulation and education. He is also an adjunct faculty member at the University of Texas at Austin. Currently, he writes, teaches, and consults on the field of semiconductor microlithography in Austin, Texas.
Features
  • Covers material required for a full semester course on optical lithography with principles, methods and future developments
  • Presents a thorough mathematical treatment of lithography, suitable for use in a graduate level course, with problems at the end of each chapter
  • Optional computer simulation exercises are included at the end of each chapter
  • Appropriate both to universities and to people in industry who need to self-teach themselves lithography
  • Presents an important industrial topic that accounts for approximately 30% of costs in the manufacturing of electronic devices
  • More author information and a free laboratory manual can be found at http://www.lithoguru.com/textbook/index.html