Loading...

Optimal Resource Allocation: With Practical Statistical Applications and Theory

ISBN: 978-1-118-40070-8

May 2013

256 pages

Digital Evaluation Copy

Request Digital Evaluation Copy
Description
A UNIQUE ENGINEERING AND STATISTICAL APPROACH TO OPTIMAL RESOURCE ALLOCATION

Optimal Resource Allocation: With Practical Statistical Applications and Theory features the application of probabilistic and statistical methods used in reliability engineering during the different phases of life cycles of technical systems.

Bridging the gap between reliability engineering and applied mathematics, the book outlines different approaches to optimal resource allocation and various applications of models and algorithms for solving real-world problems. In addition, the fundamental background on optimization theory and various illustrative numerical examples are provided. The book also features:

  • An overview of various approaches to optimal resource allocation, from classical Lagrange methods to modern algorithms based on ideas of evolution in biology
  • Numerous exercises and case studies from a variety of areas, including communications, transportation, energy transmission, and counterterrorism protection
  • The applied methods of optimization with various methods of optimal redundancy problem solutions as well as the numerical examples and statistical methods needed to solve the problems
  • Practical thoughts, opinions, and judgments on real-world applications of reliability theory and solves practical problems using mathematical models and algorithms

Optimal Resource Allocation is a must-have guide for electrical, mechanical, and reliability engineers dealing with engineering design and optimal reliability problems. In addition, the book is excellent for graduate and PhD-level courses in reliability theory and optimization.

About the Author

IGOR USHAKOV, DrSci, was previously a professor at both The George Washington University and the University of California, San Diego; chair of the Department of Large Scale Systems at the Moscow Institute of Physics and Technology; and a principal engineer at Qualcomm. In addition, he is founder of the International Group on Reliability's Gnedenko Forum and has authored or edited dozens of books and published more than 300 journal papers on reliability engineering, logistics, and quality assurance.