Loading...

Integrated Tracking, Classification, and Sensor Management: Theory and Applications

ISBN: 978-1-118-45056-7

November 2012

Wiley-IEEE Press

736 pages

Description

A unique guide to the state of the art of tracking, classification, and sensor management

This book addresses the tremendous progress made over the last few decades in algorithm development and mathematical analysis for filtering, multi-target multi-sensor tracking, sensor management and control, and target classification. It provides for the first time an integrated treatment of these advanced topics, complete with careful mathematical formulation, clear description of the theory, and real-world applications.

Written by experts in the field, Integrated Tracking, Classification, and Sensor Management provides readers with easy access to key Bayesian modeling and filtering methods, multi-target tracking approaches, target classification procedures, and large scale sensor management problem-solving techniques. Features include:

  • An accessible coverage of random finite set based multi-target filtering algorithms such as the Probability Hypothesis Density filters and multi-Bernoulli filters with focus on problem solving
  • A succinct overview of the track-oriented MHT that comprehensively collates all significant developments in filtering and tracking
  • A state-of-the-art algorithm for hybrid Bayesian network (BN) inference that is efficient and scalable for complex classification models
  • New structural results in stochastic sensor scheduling and algorithms for dynamic sensor scheduling and management
  • Coverage of the posterior Cramer-Rao lower bound (PCRLB) for target tracking and sensor management
  • Insight into cutting-edge military and civilian applications, including intelligence, surveillance, and reconnaissance (ISR)

With its emphasis on the latest research results, Integrated Tracking, Classification, and Sensor Management is an invaluable guide for researchers and practitioners in statistical signal processing, radar systems, operations research, and control theory.

About the Author

MAHENDRA MALLICK, PhD, is Principal Research Scientist at the Propagation Research Associates, Inc. A senior member of the IEEE, he has served as the associate editor-in-chief of the online journal of the International Society of Information Fusion (ISIF).

VIKRAM KRISHNAMURTHY, PhD, holds the Canada Research Chair in Statistical Signal Processing at The University of British Columbia. He is an IEEE Fellow and Editor-in-Chief of the IEEE Journal of Selected Topics in Signal Processing.

BA-NGU VO, PhD, is Professor and Chair of Signals and Systems in the Department of Electrical and Computer Engineering at Curtin University in Western Australia. He is Associate Editor for IEEE Transactions on Aerospace and Electronic Systems.