This only and up-to-date monograph on this versatile method covers its use in a range of applications spanning the fields of physics, materials science, electrical engineering, medicine, and research and industry. Following an introduction, the highly experienced author goes on to investigate acoustic field structure, output signal formation in transmission raster acoustic microscopes and non-linear acoustic effects. Further chapters deal with the visco-elastic properties and microstructure of the model systems and composites used, as well as polymer composite materials and the microstructure and physical-mechanical properties of biological tissues. A handy reference for materials scientists, electrical engineers, radiologists, laboratory medics, test engineers, physicists, and graduate students.
About the Author
Roman Gr. Maev received his Ph.D. from the Physical Institute of the Russian Academy of Sciences in 1973 and his D.Sc. in acoustic microscopy from the Russian Academy of Sciences, Moscow, in 2002. From 1994 to 1997, he held a post as Director of the Acoustic Microscopy Center of the Russian Academy of Sciences, then established the Centre for Imaging Research and Advanced Material Characterization at the University of Windsor, Canada. He is currently a Full Faculty Professor at the Physics Department at the same University and since 2001 the Chairholder of the NSERC/DaimlerChrysler/Industrial Research Chair in Applied Solid State Physics and Material Characterization. Professor Maev's research interests focus on the fundamentals of condensed matter, physical acoustics, ultrasonic imaging, and acoustic microscopy. He has published numerous books, more than 300 scientific papers, and holds twenty patents.