Loading...

Electromyography: Physiology, Engineering, and Non-Invasive Applications

Share Icon

ISBN: 978-0-471-67580-8

July 2004

Wiley-IEEE Press

520 pages

Description
A complete overview of electromyography with contributions from pacesetters in the field

In recent years, insights from the field of engineering have illuminated the vast potential of electromyography (EMG) in biomedical technology. Featuring contributions from key innovators working in the field today, Electromyography reveals the broad applications of EMG data in areas as diverse as neurology, ergonomics, exercise physiology, rehabilitation, movement analysis, biofeedback, and myoelectric control of prosthesis.

Bridging the gap between engineering and physiology, this pioneering volume explains the essential concepts needed to detect, understand, process, and interpret EMG signals using non-invasive electrodes. Electromyography shows how engineering tools such as models and signal processing methods can greatly augment the insight provided by surface EMG signals.

Topics covered include:

  • Basic physiology and biophysics of EMG generation
  • Needle and surface electrode detection techniques
  • Signal conditioning and processing issues
  • Single- and multi-channel techniques for information extraction
  • Development and application of physical models
  • Advanced signal processing techniques
With its fresh engineering perspective, Electromyography offers physiologists, medical professionals, and students in biomedical engineering a new window into the far-reaching possibilities of this dynamic technology.
About the Author
Roberto Merletti, PhD, is Director of the Laboratory for Engineering of the Neuromuscular System at Politecnico di Torino, Italy, and coordinator of neuromuscular research projects for the European Community and European Space Agency. He is author or coauthor of two books and more than fifty journal articles and received his doctoral degree from The Ohio State University.

Philip A. Parker, PhD, is Professor of Electrical Engineering at the University of New Brunswick, Canada, where he received his doctoral degree. He has authored or coauthored three book chapters and more than fifty journal articles.