Loading...
Introduction to Finite Strain Theory for Continuum Elasto-Plasticity
ISBN: 978-1-118-43772-8
October 2012
440 pages
Elasto-plastic deformation is frequently observed in machines and structures, hence its prediction is an important consideration at the design stage. Elasto-plasticity theories will be increasingly required in the future in response to the development of new and improved industrial technologies. Although various books for elasto-plasticity have been published to date, they focus on infinitesimal elasto-plastic deformation theory. However, modern computational techniques employ an advanced approach to solve problems in this field and much research has taken place in recent years into finite strain elasto-plasticity. This book describes this approach and aims to improve mechanical design techniques in mechanical, civil, structural and aeronautical engineering through the accurate analysis of finite elasto-plastic deformation.
Introduction to Finite Strain Theory for Continuum Elasto-Plasticity presents introductory explanations that can be easily understood by readers with only a basic knowledge of elasto-plasticity, showing physical backgrounds of concepts in detail and derivation processes of almost all equations. The authors address various analytical and numerical finite strain analyses, including new theories developed in recent years, and explain fundamentals including the push-forward and pull-back operations and the Lie derivatives of tensors.
Key features: